Monday, July 27, 2009

Compass Sensor with Microcontroller Project

AbstractThis paper describes the development of a compass sensing unit for use on a remotely operated vessel. The sensor determines the direction of the vessel’s path to aide the user in operating the boat wirelessly through a laptop. The system provides information tofacilitate tracking and controlling the boat when it is not easily seen by the operator. The selected compass, Dinsmore R1655 analog compass sensor, was used in conjunction ofan 8051 microcontroller to provide the necessary data. The system was able to read an analog value from the sensor and convert it to digital direction. The paper will describe the system design and present test results.

Microcontroller Design Final Project: Digital Compass
The goal of this project is to build a digital compass that displays both the direction and cardinal points on a television. Other functionalities were added to complement the sensor interface, such as, temperature display, magnetic declination input and disability option.

Electronic Compass Design using KMZ51 and KMZ52
This paper describes how to realize electronic compass systems using the magnetoresistive sensors KMZ51 and KMZ52 from Philips Semiconductors. Therefore, firstly an introduction to the characteristics of the earth´s magnetic field is given. In the following, the main building blocks of an electronic compass are shown, which are two sensor elements for measuring the x- and y-components of the earth field in the horizontal plane, a signalconditioning unit and a direction determination unit.

Functional block diagram of an electronic compass

Autocalibration of an Electronic Compass for Augmented Reality
Electronic compass is often used to provide the absoluteheading reference for tracking the user’s head and handsin Virtual Reality (VR) and Augmented Reality (AR),especially for outdoor AR applications. However,compass is vulnerable to environment magnetismdisturbance. Existing compass calibration methodsrequire complex steps and true heading reference whichis often impossible to be obtained in outdoor ARapplications, and is useful only when compass is inhorizontal plane. An autocalibration method without theneed of heading reference and redundant sensors isproposed in this paper. First the compass error modelbased on physical principle is presented, then thealgorithm to calculate the compensation coefficients witha set of sample measurements of the sensors in thecompass is described. Because the influence of theenvironmental disturbance has been effectivelycompensated, the calibrated compass can providedaccurate heading even when it is under large tilt attitude.

3-AXIS COMPASS REFERENCE DESIGN with Microcontroller Circuit

The HMC1052 two-axis magnetic sensor contains two Anisotropic Magneto-Resistive (AMR) sensor elements in a singleMSOP-10 package. Each element is a full wheatstone bridge sensor that varies the resistance of the bridge magnetoresistorsin proportion to the vector magnetic field component on its sensitive axis. The two bridges on the HMC1052 areorientated orthogonal to each other so that a two-dimensional representation of an magnetic field can be measured. Thebridges have a common positive bridge power supply connection (Vb); and with all the bridge ground connections tiedtogether, form the complete two-axis magnetic sensor. Each bridge has about an 1100-ohm load resistance, so eachbridge will draw several milli-amperes of current from typical digital power supplies. The bridge output pins will present adifferential output voltage in proportion to the exposed magnetic field strength and the amount of voltage supply acrossthe bridge. Because the total earth’s magnetic field strengthis very small (~0.6 gauss), each bridge’s vector component ofthe earth’s field will even be smaller and yield only a couple milli-volts with nominal bridge supply values. Aninstrumentation amplifier circuit; to interface with the differential bridge outputs, and to amplify the sensor signal byhundreds of times, will then follow each bridge voltage output.

Compass Sensor

Sunday, July 05, 2009

Robot Arm Project and Robot ArmVedio

The robot arm is probably the most mathematically complex robot you could ever build. As such, this tutorial can't tell you everything you need to know. Instead, I will cut to the chase and talk about the bare minimum you need to know to build an effective robot arm.

Design and Application of a 3 DOF Bionic Robot Arm
High efforts are put in the mechanical design of industrial manipulators to obtain high position accuracy using rigid joint actuators and rigid arms resulting in heavy masses of arms. For safety reasons, they can only be used in environments strictly separated from humans. Thus they stand in remarkable contrast to animals and humans with their much better relationship from payload to arm weight, and its concurrent high movement quality by "intelligent" control.

Robotic arm
I present the results, hoping it will be useful to other people who are also interested. This robotic arm is a little demonstration, it uses stock servo-motors normally used in RC models, and is controlled from a pc, attached with a serial cable.

Computerized wireless Pick n Place Robot
this is the most advance version of “Pick n Place Robot” perhaps and most popular and widely used in recent industries. A person from a remote place can comfortably control the motion of robotic arm without any wire connection.

RoboSim- A Simple 6-DOF Robot Manipulator Simulation System
RoboSim is a very simple simulation system for a 6 degres of freedom robot manipulator. The basic functions of the control panel are to move the manipulator either in joint coordinates or in cartesian coordinates. It is also possible, to change the view position or change length and color of the links. Joint weights may be set, in order to favor movement of individual joints versus others

torsoHead LeftArm stepper motors showing, stepper motor control board, and cardboard hand or fingers. The cardboard fingers are place holders and have been cut to the same proportions as a human hand. This is needed to gauge the real distance for the arm's reach. The fingers will be replaced with the finished hand.
Atlas II Robotic SystemATLAS II is a complete robotic system consisting of the robot arm, power supplies, and control microcomputer.

Robot Arm Made Vedio

Robot Arm on How it's Made

Robotic Arm Made Out of Recycled Materials (Build)

My first Robot Arm

Robotic Arm With Four Degree Of Freedom

articulate robotic arm gripper mechanism

Robot arm with stepper motor

Robot arm simulation in Solidworks2009