Friday, November 27, 2009

Self-assembling Robot

A Self-assembling Lattice Reconfiguration Robot



Telecube modules are cube shaped modules with faces that can extend out doubling the length of any dimension. Each face "telescopes" out, thus the name. Each face also has a latching mechanism to attach or detach from any other face of a neighboring module. We have experimented with shape memory alloy and permanent switching magnet technologies in various versions of this system.

http://www2.parc.com/spl/projects/modrobots/lattice/telecube/index.html

UWE investigates evolving 'swarm' robots
The University of the West of England (UWE) is a partner in 'Symbrion', a ground breaking new European funded project, which will investigate the principles of how large groups (swarms) of robots can evolve and adapt together into different organisms based on bio-inspired approaches.

The aim of the project is to develop the novel principles behind the ways in which robots can evolve and work together in large 'swarms' so that – eventually - these can be applied to real-world applications. The swarms of robots are capable of forming themselves into a 'symbiotic artificial organism' and collectively interacting with the physical world using sensors.

http://info.uwe.ac.uk/news/uwenews/article.asp?item=1231

Self-assembling Robot Video

Robots with a mind of their own Video


Scientists are now building a new kind of robot capable of self-assembly and doing tasks too difficult or too dangerous for human beings.



Self-Replicating Repairing Robots Video
Engineers at Cornell University have designed this odd-looking machine that can rebuild itself and also could perform repairs on itself.



Modular robot reassembles when kicked apart Video


Modular Robot

Wednesday, November 18, 2009

Modular Robot Project


MTRAN
modular robots have been intensively investigated mainly by universities and research institutes in Japan and USA since around 1990 as the robots' versatility, flexibility and fault-tolerance has been attracting researchers' interest.


Experiment of self-reconfiguration by 9 module
As MTRAN is rather smaller and lighter than ever, both self-reconfiguration and dynamical motion of a group is made possible


http://staff.aist.go.jp/e.yoshida/test/research-e.htm

PolyBot




PolyBot is made up of many repeated modules. Each module is virtually a robot in and of itself having a computer, a motor, sensors and the ability to chains PolyBotattach to other modules. In some cases, power is supplied off board and passed from module to module. These modules attach together to form , which can be used like an arm or a leg or a finger depending on the task at hand.


http://www2.parc.com/spl/projects/modrobots/chain/polybot/index.html

PolyBot



Polypod is a bi-unit modular robot. This means that the robot is built up of exactly two types of modules that are repeated many times. This repetition makes manufacturing easier and cheaper. Dynamic reconfigurability allows the robot to be highly versatile, reconfiguring itself to whatever shape best suits the current task. To study this versatility, locomotion was chosen as the class of tasks for examination.
http://www2.parc.com/spl/projects/modrobots/chain/polypod/index.html



Digital Clay





At Xerox PARC it is a subset of the modular robotics project. As such it is a stripped down version of a modular robot. That is, there is a) no active coupling and b) no actuation for producing module to module motions. Changes to an assembly of modules is made by a user. But it embodies one very important aspect—that the modules have some capacity to sense or know their own orientation in space with respect to other modules. As such it may be a useful hardware system for testing software, communications, power distribution for physically modular and reconfigurable systems.
http://www2.parc.com/spl/projects/modrobots/lattice/digitalclay/index.html

Modular Snake Robots


Snake robots can use their many internal degrees of freedom to thread through tightly packed volumes accessing locations that people and machinery otherwise cannot use. Moreover, these highly articulated devices can coordinate their internal degrees of freedom to perform a variety of locomotion capabilities that go beyond the capabilities of conventional wheeled and the recently developed legged robots. The true power of these devices is that they are versatile, achieving behaviors not limited to crawling, climbing, and swimming.

http://www.cs.cmu.edu/~biorobotics/projects/modsnake/modsnake.html



MTRAN3 Modular Robot



Modular robot reassembles when kicked apart

A robot developed by roboticists at the University of Pennsylvania is made of modules that can recognise each other.

Sunday, November 08, 2009

Flying Robot Project

The HoverBot C
An Electrically Powered Flying Robot

SUMMARY
This paper describes the development of a fully autonomous or semi-autonomous
hovering platform, capable of vertical lift-off and landing without a launcher, and capable of
stationary hovering at one location. The idea to build such a model-sized aerial robot is not new; several other research institutes have been working on aerial robots based on commercially available, gasoline powered radio-control model helicopters. However, the aerial robot proposed here, called the HoverBot, has two distinguishing features: The HoverBot uses four rotor heads and four electric motors, making it whisper-quiet, easy-to-deploy, and even suitable for indoor applications. Special applications for the proposed HoverBot are inspection and surveillance tasks in nuclear power plants and waste storage facilities.

Without a skilled human pilot at the controls, the foremost problems in realizing a model helicopter-sized flying robot are stability and control. It is necessary to investigate the stability and control problems, define solutions to overcome these problems, and builde a prototype vehicle to demonstrate the feasibility of the solutions. The proposed HoverBot will have eight input sensors for stability and control, and eight output actuators (4 motors and 4 servos for rotor pitch control). The resulting control system is a very complex, highly non-linear Multiple-Input Multiple-Output (MIMO) system, in which practically all input signals affect all output signals. A surprisingly simple experimental control method, called additive control, is proposed to control the system. This method was successfully used in the current experimental prototype of the HoverBot (although with fewer input signals). It is also proposed to investigate two alternative control methods, adaptive control and neural networks, both of which appear to be especially suitable for the Multiple-Input Multiple-Output control problem.
If successful, the project will result not only in a working prototype of a flying robot, but
it will also provide important insight into the functioning of various control methods for very
complex MIMO systems.

Control of the HoverBot
The control system of the HoverBot is designed to allow either fully autonomous operation or remote operation by an unskilled operator. To either, the HoverBot will appear as an
omnidirectional vehicle with 4 degrees of freedom: (1) up/down (2) sideways, (3) forward/backward, and (4) horizontal rotation.





http://www.cs.cmu.edu/~biorobotics/papers/sbp_papers/integrated1/borenstein_hovercraft.pdf

Creation of a Learning, Flying Robot by Means of Evolution
Abstract
We demonstrate the first instance of a real
on-line robot learning to develop feasible
flying (flapping) behavior, using evolution.
Here we present the experiments and results
of the first use of evolutionary methods for
a flying robot. With nature's own method,
evolution, we address the highly non-linear
fluid dynamics of flying. The flying robot is
constrained in a test bench where timing and
movement of wing flapping is evolved to give
maximal lifting force. The robot is assembled
with standard o®-the-shelf R/C servomotors
as actuators. The implementation is a conventional

steady-state linear evolutionary algorithm.

ROBOT
Five servomotors are used for the robot. They are
arranged in such a way that each of the two wings has
three degrees of freedom. One servo controls the two
wings forward/backward motion. Two servos control
up/down motion and two small servos control the twist
of the wings. The robot can slide vertically on two steel
rods. The wings are made of balsa wood and solar,
which is a thin, light air proof ¯lm used for model
aircrafts, to keep them lightweight. They are as large
as the servos can handle, 900 mm.




http://fy.chalmers.se/~wolff/AWNGecco2002.pdf

Energy-efficient Autonomous Four-rotor Flying Robot
Controlled at 1 kHz

Abstract
—We describe an efficient, reliable, and robust fourrotor
flying platform for indoor and outdoor navigation. Currently,
similar platforms are controlled at low frequencies due
to hardware and software limitations. This causes uncertainty
in position control and instable behavior during fast maneuvers.
Our flying platform offers a 1 kHz control frequency and
motor update rate, in combination with powerful brushless
DC motors in a light-weight package. Following a minimalistic
design approach this system is based on a small number of lowcost
components. Its robust performance is achieved by using
simple but reliable highly optimized algorithms. The robot is
small, light, and can carry payloads of up to 350g.




THE FOUR-ROTOR HARDWAREA. General design
Our flying robot has a classical four rotor design with
two counter rotating pairs of propellers arranged in a square
and connected to the cross of the diagonals. The controller
board, including the sensors, is mounted in the middle of the
cross together with the battery. The brushless controllers are
mounted on top of the booms. Figure I shows a photograph
of the flying robot. The weight without battery is 219g. The
flight time depends on the payload and the battery. With
a 3 cell 1800mAh LiPo battery and no payload the flight
time is 30 minutes. We measured the thrust with a fully
charged 3 cell LiPo (12.6V) at 330g per motor. With four
motors the maximum available thrust is 1320g. Since the
controllers need a certain margin to stabilize the robot also
in extreme situations, not all the available thrust can be used
for carrying payload. In addition, efficiency drops and as
a consequence flight time decreases rapidly with a payload
much larger than 350g. Because of this we rate our robot for
a maximum payload of 350g.

With a 350g payload, a flight time of up to twelve minutes
can be achieved. The maximum diameter of the robot without
the propellers is 36.5cm. The propellers have a diameter of
19.8cm each. The sensors used to stabilize the robot are very
small and robust piezo gyros ENC-03R from Murata [14].
The second design iteration of this robot is already functional
but not fully tested and characterized experimentally. This
second version additionally has a three axial accelerometer
and relies on datafusion algorithms, still running at 1kHz,
to obtain absolute angles in pitch and roll.

http://www.societyofrobots.com/robottheory/Energy-Efficient_Autonomous_Four-Rotor_Flying_Robot_Controlled_at_1_Khz.pdf

The ROBUR project: towards an autonomous
flapping-wing animat

Abstract

Flapping-wing flight is not applicable to huge aircrafts, but has a great potential for micro UAVs - as demonstrated by real birds, bats or flying insects. The ROBUR project aims at designing a robotic platform that will serve to better understand the design constraints that this flying mode entails, and to assess its capacity to foster autonomy and adaptation. The article describes the major components of the project, the tools that it will call upon, and its current state of achievement.
Research on flapping flight maneuverability
A generic model of a flapping wing aircraft has been designed, in which lifting surfaces are
modelled by a set of articulated panels (figure 2). In a first stage, this model will be used to
design a simple periodic controller for such a platform by using evolutionary algorithms (figure
3). This controller is expected to generate a periodic, horizontal, flapping flight at a constant
speed.

Physical model used in this project.




http://animatlab.lip6.fr/papers/Doncieux_JMD2004.pdf


Quad-Rotor Flying Robot



New German UAV – microdrone
A high technology very small UAV made in germany by microdrone GmbH. Can reach an altitude of 400m and stay in the sky for 30 minutes




QTAR: Quad Thrust Aerial Robot 2005






Buy Flying Robot